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ABSTRACT: Specifying at a technical level the semantic content of computational models and the 
services they may provide requires mathematical descriptions.  Computer source code, such as C, C++, or 
Java, provides, at an algorithmic level, a relatively primitive form of unambiguous, mathematical 
specification. These computer languages are not as useful for specifying requirements, exposing 
assumptions, validating that designs satisfy required global properties, or for verifying that 
implementations conform to the design and requirements. The outward mathematical properties of software 
services may be documented in natural language, but they are not generally documented in machine-
readable form. 
 
Much work has been done during the last twenty years in a variety of concurrent efforts to bring about the 
ability to write machine-readable, formal, representations of mathematical concepts. These may be used to 
represent various forms of mathematical knowledge, including mathematical specifications of software 
objects. We discuss how these ideas may be so applied. 
 
 
 
1. Introduction 
 
One might think that the epitome of clear and 
unambiguous descriptions is one based on 
mathematics. Mathematical notation itself, 
however, is commonly a point of contention, and 
there is no uniform, comprehensive standard, and 
hence, no unambiguous standard. Such 
contention is illustrated in the history of the 
notation for representing physical quantities with 
vectors [1]. This example, illustrates that poor 
notation, while difficult to use, can have its 
champions. In general, however, widely accepted 
standards in the representation of technical 
information have probably been of far greater 
benefit overall than might be inferred by a focus 
on the disputes encountered on the way to 
achieving those standards. Significant contention 
is perhaps more indicative of the lack of maturity 
of a given branch of mathematics. Indeed, 
improving the standardization of mathematical 
notation for applied mathematics, which makes 
use of settled mathematical concepts, should 
have great benefit. 

 
Perhaps it is due to the influence of the 
widespread use of computers that the last couple 
of decades have seen significant attempts to 
address the standardization of mathematical 
notation. Computers have matured from being 
primarily sophisticated numerical calculators, to 
where they now perform symbolic mathematical 
manipulations with computer algebra systems 
and automated theorem provers. These attempts 
at standardizing notation, at first confined to 
research communities [2-4] and then showing up 
in proprietary commercial products [5-7], have 
culminated in an effort to create a widespread 
public standard for the world-wide web [8]. 
 
2. Background 
 
The Semantic Web is an idea conceived by the 
World-Wide Web Consortium (W3C) as an 
extension of the world-wide web. Tim Berners-
Lee, inventor of Hyper-Text Markup Language 
(HTML) and the first web browser, is currently 
director of the W3C. Whereas HTML allowed 



the creation and easy access and display of text-
like documents, the semantic web consists of a 
set of constructs that will support the 
representation of layers of semantic descriptors, 
or metadata. These metadata, described in 
Extensible Markup Language (XML) [9] 
promise to lessen ambiguity and even support 
intelligent automated processing of documents 
on the web. 
 
A variety of tools have arisen due to efforts of 
the W3C [10]. Recently, on February 9th, 2004, 
the W3C released the Resource Description 
Framework (RDF) and the OWL Web Ontology 
Language (OWL) as W3C Recommendations. 
RDF is used to represent information and to 
exchange knowledge in the Web. OWL is used 
to publish and share ontologies, supporting 
advanced Web search, software agents and 
knowledge management. 
 
Another tool, RDF Schema describes how to use 
RDF to build RDF vocabularies. RDF Schema 
defines a basic vocabulary and conventions for 
use by Semantic Web applications. 
 
The tools RDF, RDF Schema, OWL, etc. have 
been pulled together to deal with the challenges 
of representing all sorts of human knowledge. 
Since we are specifically interested in 
representing a small slice of that, i.e., specifying 
mathematical models, we are principally 
interested in an effort that comprises the current 
effort at standardizing mathematics. 
 
Finally, another tools developed under the 
coordination of the W3C is the Mathematics 
Markup Language (MathML) [8] which we 
describe in more detail in this article. 
 
3. MathML: Presentation vs. Content 
markup 
 
Currently, for a large number of technical 
journals, the de-facto standard electronic format 
for submission of technical papers is LaTeX[10]. 
LaTex has been available for many years, on 
most operating systems, with many free versions, 
and above all, it has allowed authors to specify 
mathematical equations within the text of journal 
articles. One shortcoming of LaTeX with respect 
to mathematical content is that it is primarily 
oriented towards presentation, i.e., equation 
specifications amount to sophisticated 
typesetting specifications. A similar situation has 

taken place with the world-wide web, where the 
hypertext markup language (HTML), which, 
while revolutionizing the communication 
occurring on computer networks is primarily 
oriented towards visual presentation. 
 
The shortcomings of presentation-oriented 
specification may be explained by a simple 
example. Let us say that we want to write the 
following equation: 
 
(1)               
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In this equation a symbol, x, has a superscript, i, 
and is equated to the Greek symbol, π. This is 
relatively straightforward to represent with a 
variety of typesetting oriented applications. In 
reading this equation, we are still left with 
questions. What does x signify? Is the 
superscript an index, a label, or an exponent? 
Does the equality symbol represent assignment, 
as in a computer language? Is π used to represent 
the ratio of a circle’s circumference to its 
diameter? These questions illustrate that, with a 
typeset equation there is no context and we must 
guess at the meaning of the terms as well as the 
meaning of the full mathematical sentence. We 
cannot be sure about the meaning of the symbols 
without supporting context, usually supplied in 
the non-standard, non-formal language of the 
embedding text. 
 
As part of the semantic web effort, the W3C 
Math Activity is developing the MathML 
standard for representing mathematical 
knowledge. MathML, is comprised of two parts: 
one that focuses on presentation, called 
Presentation MathML, and one that focuses on 
content, called Content MathML.  
 
While the presentation of mathematics is in itself 
important, we focus here on the representation of 
mathematical content, i.e., the semantic level of 
information conveyed in a mathematical 
statement. We do this because we believe that we 
should encourage technical authors not to worry 
so much about the appearance of their 
documents, but to focus on getting the right 
content. Authors shouldn’t be concerned with a 
choice between using 18pt Times Roman, 12pt 
Times Italic for particular elements of a 
document. If they are required to think about 
these things, they waste their time with 
document design and create a lot of badly 
designed documents. It is better to leave 
document design to document designers, and to 



let technical authors concern themselves with 
writing technical content. 
 
What Content MathML provides is a 
standardized set of names and symbols for a 
variety of mathematical concepts as opposed to 
their visual representation. As an XML 
application, MathML may make use of a large 
set of Unicode characters to represent numbers 
and identifier symbols. Identifier symbols are 
strings of characters that are used as names. 
These are tagged by the token elements 
<ci></ci>, for content identifier symbols and 
<cn></cn>, for content numbers. For example, 
the number 64 is represented as 
 
<cn>64</cn> 
 
showing both the initiating and terminating tags. 
Another number, the mathematical constant, π, 
the ratio of a circle’s circumference to its 
diameter, is represented as 
 
<cn type=”constant”>&pi;</cn> 
 
This construct, using the ampersand and semi-
colon, is used to express a set of MathML Entity 
Names. This is used in preference to using 
Unicode literals to represent a variety of 
symbols, resulting in a more human-readable 
representation. In some cases, such as with π, the 
default meaning of a constant number 
represented with such a symbol is the common 
meaning it holds. In other contexts &pi; would 
usually be a readable representation for the 
Greek lower-case letter, π, not the 
transcendental. 
 
To return to equation (1), the first identifier 
symbol, x, may be represented as 
 
<ci>x</ci> 
 
Note that this representation is of a scalar, by 
default, while the representation of a vector, x, 
would be 
 
<ci type=”vector”>x</ci> 
 
Note also that the typesetting or style of 
presentation is not expressed: a boldface or an 
arrow-above typographical representation of a 
vector may be expressed elsewhere, such as in a 
Presentation MathML annotation to the content 
or as a style-sheet definition. 
 

The next concept for constructing mathematical 
expressions in Content MathML is the apply 
construct. The meaning of this construct is to 
apply a named operator to a list of arguments. 
For example, “equals” is represented by a 
symbol <eq/>, and the equation, x=64 would be 
represented by 
 
<apply> 

<eq/> 
<ci>x</ci> 
<cn>64</cn> 

</apply> 
 
Numerous operators are named in the standard. 
Another operator is <power/>, which allows one 
to express exponents of numbers or identifiers. 
We can now represent two possible meanings for 
equation (1), 

! 

x
i
= " , one, where the i-th power 

of x is equated to π 
 
<apply> 

<eq/> 
<apply> 

<power/> 
<ci>x</ci> 
<ci>i</ci> 

 </apply> 
<cn type=”constant”>&pi;</cn> 

</apply> 
 
or, alternatively, the i-th element of the vector x 
is equated to π 
 
<apply> 

<eq/> 
<apply> 

<selector/> 
<ci type=”vector”>x</ci> 
<ci>i</ci> 

 </apply> 
<cn type=”constant”>&pi;</cn> 

</apply> 
 
This example illustrates some of the basic 
expressive capabilities of the Content MathML 
standard. As we continue, we will see the 
additional need to represent: complex numbers; 
multiplication, division, subtraction and addition; 
partial deriviatives, divergence, and gradient 
operations. 
 
4. Physics-based Models 
 



Of significant interest is the representation of 
mathematical expressions suitable for describing 
mathematical models of physical objects[11]. 
First, we see how MathML can help express 
more complex equations, such as partial 
differential equations. 
 
As an example, we begin by trying to write a 
description of an acoustic wave field [12-13]. 
This begins with the wave equation describing 
the behavior of an acoustic pressure field to an 
impulsive acoustic point-source, i.e., 
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This equation is a starting point for our 
discussion. The function, G, sometimes called 
the “impulse response function”, or “Green’s 
function” represents the acoustic pressure at a 
point in space, r, at time t, due to an acoustic 
impulsive source at another point in space, r’, at 
time t’. The current standard for representing 
MathML allows us to represent the following 
concepts directly. The Laplacian operator, 

! 

"
2, is 

represented as <laplacian/>, or, alternatively as 
the divergence of the gradient, i.e., 
 
<apply> 

<divergence/> 
<apply> 

<gradient/> 
<ci type=”function”>G</ci> 

 </apply> 
</apply> 
 
While we have here specified the type of G as 
“function”, we could also have given it a type of 
“complex”. The current MathML specification, 
i.e., MathML 2.0, 2nd edition, recognizes that 
multiple type specifiers, such as complex and 
function, may be simultaneously applicable. 
Future modifications to the standard are 
anticipated to support this [14] directly. In the 
meantime, users are advised to use a 
<semantics/> construct to create their own 
versions of these mathematical objects. 
 

The next term in the wave equation, 
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may be represented as 
 
<apply> 
 <scalarproduct/> 
 <apply> 

  <divide/> 
  <apply> 
   <gradient/> 
   <ci type=”function”>&rho</ci> 
  </apply> 
  <ci>&rho</ci> 
 </apply> 
 <apply> 
  <gradient/> 
  <ci type=”function”>G</ci> 
 </apply 
</apply> 
 

The third term, 
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<apply> 
 <multiply/> 
 <apply> 
  <power/> <ci type=”function”>c</ci> 
  <cn>-2</cn> 
 </apply> 
 <apply> 
  <partialdiff/> 
  <bvar><degree><cn>2</cn></degree> 
   <ci>t</ci> 
  </bvar> 
  <degree><cn>2</cn></degree> 
  <ci type=”function”>G</ci> 
 </apply> 
</apply> 
 
We note that here we have specified the sound 
speed to be a function rather than a constant. 
One important mathematical concept not defined 
by the MathML strandard is that of the impulse 
function, or Dirac delta-function. MathML 2.0 
gives a construct to define undefined concepts. 
Since initially we only need to unambiguously 
refer to the Dirac delta function, rather than 
make use of its properties to perform some 
evaluation, the first thing we need is a name. We 
would prefer <diracdelta/>, but instead must use 
the MathML <csymbol> construct to create a 
representation of the concept. We can supply a 
universal resource locator, or URL, to provide a 
definition that we write ourselves. Considering 
this, the left-hand side of the wave equation, 

! 

"# (r " $ r )# (t " $ t ) ,  may then be represented as  
 
<apply> 
 <product/> 
 <cn>-1</cn> 
 <apply> 
  <csymbol encoding=”text” 

definitionURL=”http://www.ait.nrl.na
vy.mil/missingmath/diracdelta.htm> 



   <msub><mi>&delta;</mi></msub> 
  </csymbol> 
  <apply> 
   <minus/> 
   <ci type=”vector”>r</ci> 
   <ci type=”vector”>r&apos;</ci> 
  </apply> 
 </apply> 
 <apply> 
  <csymbol encoding=”text” 

definitionURL=”http://www.ait.nrl.na
vy.mil/missingmath/diracdelta.htm> 

   <msub><mi>&delta;</mi></msub> 
  </csymbol> 
  <apply> 
   <minus/> 
   <ci>t</ci> 
   <ci>t&apos;</ci> 
  </apply> 
 </apply> 
</apply> 
 
In substituting our own symbol for the dirac 
delta function we have specified its appearance, 
using the <msub> and <mi> tags, but we have 
not here specified the underlying mathematical 
properties of the symbol. For example we know 
that 
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While it is best that the semantics be specified, 
there is currently no standard telling us how to 
do so: it seems that an empty definitionURL will 
not affect any automated interpretation of the 
symbol. The primary value that the <csymbol> 
construct gives us is in user-defined labels for 
concepts undefined in the MathML specification. 
We may also consider that another XML 
application for describing mathematical content, 
OpenMath[3], provides a little more help in this 
regard by supporting user-developed content-
dictionaries. OpenMath constructs may be used 
within the same XML-based document as 
MathML descriptions. 
 
5. Where is the Physics? 
 
While the above example is taken from an 
equation representing physical phenomena, it is 
still only a mathematical equation: the physical 
meaning is not in the XML-based description. 
Some concepts that need to be expressed in order 
to state the physical meaning are as follows. We 

need the notion of a space-time, where physical 
space-time is an instance of a type of 
mathematical metric-space. We need the notion 
of a class, suggestively named Physical_Object, 
that allows us to attribute a name, type, and set 
of measurable physical properties to objects that 
are modeled. For example, how would we tag the 
MathML specification of equation (2) above so 
as to indicate that we are modeling the 
propagation of acoustic waves in the fluid-body 
representation of an object we refer to as “the 
ocean”? How do we state that the position and 
time symbols, which refer to Newtonian space-
time, have the properties of elements in a 
Euclidean metric-space? 
 
The main point here is that when we create math-
based models, we use symbols that are loaded 
with meaning. Content MathML is a 
specification that allows us to describe much of 
the mathematical properties of those symbols. 
What it does not provide is a way to describe 
how we simultaneously use those same symbols 
to represent objects in models of reality. In order 
to do that we must develop associated standards. 
For example, a document [15] describing how 
the representation of physical units may be 
implemented within MathML is available with 
other MathML documentation, but it is expressly 
stated that this is not intended to be a part of the 
MathML standard. 
 
6. Summary 
 
We have described how we can begin to 
document mathematical models, using a 
standard, Content MathML, that focuses on 
specifying the mathematical content of those 
models. We have indicated that work still needs 
to be done to clarify how that mathematical 
content may need to be augmented with 
modeling constructs that are specific to a 
mathematically described scientific content such 
as physics-based models. 
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